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Abstract
An experimental and theoretical study of collective electronic excitations in Be
is presented. The plasmon energy and linewidth were measured by means of
inelastic x-ray scattering spectroscopy. Measurements were performed on a
polycrystalline sample and in a broad range of momentum transfers within the
plasmon excitation regime. Theoretical plasmon dispersion and its linewidth in
the whole Brillouin zone were derived from ab initio evaluations of the electron
density response function. The calculations were performed with full inclusion
of the electron band structure within the random-phase approximation. Good
agreement of experimental plasmon energy and linewidth dispersions with
direction-averaged theoretical results in all investigated q-range is obtained.
We conclude that, in Be, the band structure effects alone can account for the
observed finite plasmon lifetime at q = 0, as well as for the linewidth dispersion
in the long-wavelength domain.

1. Introduction

Synchrotron-radiation-based inelastic x-ray scattering spectroscopy (IXSS) as a probe of bulk
excited-state properties of electron systems in condensed matter has become a well-established
technique in the last two decades [1]. Besides having been applied to extensive studies of the
dynamic structure factor of valence electrons in the region of intermediate momentum transfer,
dominated by single-particle excitations (see the review by Schülke [1] and references therein),
IXSS has also been applied successfully to investigate collective electronic excitations at lower
momentum transfers in a large variety of materials [2–8]. Although the latter field is the domain
of the electron energy-loss spectroscopy (EELS) [9], the application of IXSS as a unique
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experimental tool for studying plasmon excitations in liquid metals [3–7] is worth mentioning.
The inelastic x-ray scattering cross section is proportional to the imaginary part of the inverse
dielectric function (the so-called energy-loss function) [10], which plays a fundamental role
in the theoretical study of elementary excitations in many-particle systems. Thus, IXSS
experiments give insight into understanding the frequency and wavevector dependence of the
response function of a correlated electron system.

Early experiments on inelastic x-ray scattering by plasmon excitation in Be were
performed using conventional x-ray sources [11–14]. Those measurements suffered from
limited energy resolution, due to the finite natural linewidth of the characteristic x-rays,
from contamination of the energy-loss spectrum by bremsstrahlung, giving rise to a very low
signal-to-background ratio, or from overlapping of energy-loss spectra, due to the Kα-doublet
structure. Furthermore, the potentiality of the near back-diffraction for energy analysis with
high resolution had not been exploited up to the time of those early experimental works. The
first high-resolution IXSS measurements on Be using monocromated synchrotron x-rays were
performed by Schülke et al [15]. That study focused on investigating the dynamic structure
factor of valence electrons in the region of intermediate momentum transfer.

It is well known that the measured plasmon dispersion relation of simple metals
deviates from predictions of the random-phase approximation (RPA) for a homogeneous, non-
interacting electron gas. Non-RPA effects arising from the exchange and Coulomb correlations
were introduced through a static local-field correction by different theoretical approaches (see,
e.g., the early reviews by Ichimaru [16] and Singwi and Tosi [17]). This correction improved
the RPA predictions lowering the dispersion of the plasmon energy, but it was not sufficient to
achieve a good quantitative agreement with experimental results [3, 18, 19]. Even a dynamical
local-field correction [20] was also unable to account for deviations between the theoretical
and experimental plasmon dispersion coefficients of alkali metals [19]. From first-principles
evaluation of the dynamical density-response function of Al and Na, with full inclusion of the
effects of the crystal structure, Quong and Eguiluz [21] showed that the observed deviations of
the plasmon dispersion from the RPA prediction for a homogeneous electron gas are attributable
mainly to band-structure effects. In the case of Be, ab initio calculations of the dynamic
response of valence electrons were carried out by Maddocks et al [22] in the regime of
particle–hole-pair excitations. They established that band-structure effects are responsible for
all the fine structure experimentally observed by Schülke et al [15] in the dynamic structure
factor of Be. In the region of low momentum transfer, plasmon dispersion curves for Be
were recently derived by Silkin et al [23] from ab initio calculations of the inverse dielectric
matrix with full inclusion of band-structure effects. The incorporation of these effects was
shown to be essential in order to improve significantly the agreement between the calculated
and measured electron inelastic mean free paths in Be. Concerning the effects of the band
structure on the wavevector dependence of the plasmon linewidth, it has been demonstrated
by Sturm [24], including the crystal potential in a perturbative way, that interband transitions
may make the major contribution in some simple metals like Al and Li, besides being the
decay mechanism responsible for the non-vanishing half-width at zero momentum transfer.
The peculiar behaviour of the plasmon linewidth in Li was subsequently confirmed to be due to
the band structure from ab initio calculations, which have taken fully into account the crystal
potential [25]. Another illustration of the important role played by interband transitions in
plasmon damping processes is the explanation of the ‘anomalous’ dispersion of the plasmon
width in K by Ku and Eguiluz [26] from ab initio calculations of the electron density response
within the framework of time-dependent density-functional theory. These authors found that
the key decay channel in K is the excitation of particle–hole pairs involving empty d-states. Ab
initio band-structure calculations have recently been used by Keast [27] to predict the low-loss
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EELS spectra, including the plasmon energy and width, for many elements and some simple
compounds, but only at zero momentum transfer. For Be, to our knowledge, calculations of the
plasmon linewidth and its wavevector dependence, including band structure effects, have not
been reported so far.

It is the purpose of this work to investigate collective excitations in Be both experimentally,
with high energy and momentum resolution, and theoretically, including full band-structure
effects. Energy-loss spectra were measured by means of inelastic x-ray scattering spectroscopy
and for momentum transfers covering the whole range of the plasmon excitation domain
(q < qc, qc being the critical plasmon wavevector). The theoretical wavevector-dependent
plasmon energy and linewidth are derived from high-precision ab initio evaluations of the
electron response function, which includes the full effects of the crystal lattice.

2. Calculation details

Observables such as the inelastic scattering cross section for x-rays and fast electrons are related
to the dynamical density-response function χ(r, r′, ω) of an interacting electron system, which,
in general, is a non-local energy-dependent function. Within the linear-response theory, it
relates to the electron density, nind(r, ω), induced in the system due to an external perturbation
potential, V ext(r, ω), through the equation

nind(r, ω) =
∫

dr′χ(r, r′, ω)V ext(r′, ω) (1)

and does not depend on the exact form of V ext(r, ω), being a characteristic of the system. In the
framework of time-dependent density-functional theory [28, 29], χ(r, r′, ω) obeys the integral
equation

χ(r, r′, ω) = χ0(r, r′, ω)

+
∫

dr1

∫
dr2χ

0(r, r1, ω)[υ(r1 − r2)+ K xc(r1, r2, ω)]χ(r2, r′, ω), (2)

where χ0(r, r′, ω) is the density-response function for a non-interacting electron system,
υ(r − r′) is the bare Coulomb potential, and K xc(r, r′, ω) accounts for dynamical exchange–
correlation effects. For a periodic crystal, one can expand all these quantities in Fourier series.
Then, the integral equation (2) transforms into a matrix equation

χG,G′(q, ω) = χ0
G,G′(q, ω)

+
∑
G′′

∑
G′′′
χ0

G,G′′(q, ω)[υG′′(q)δG′′,G′′′ + K xc
G′′,G′′′(q, ω)]χG′′′,G′(q, ω). (3)

Here, G is a vector of the reciprocal lattice, and the Fourier coefficients χ0
G,G′(q, ω) have the

form

χ0
G,G′(q, ω) = 2

�

B Z∑
k

∑
n,n′

fnk − fn′k+q

εnk − εn′k+q + (ω + iη)

× 〈ψnk|e−i(q+G)·r|ψn′k+q〉〈ψn′k+q|ei(q+G′)·r|ψnk〉, (4)

where � is the normalization volume, the factor 2 accounts for spin, the sums over n and
n′ run over the band structure for wavevectors in the first Brillouin zone (BZ), fnk is the
Fermi distribution function, εnk and ψnk(r) are Bloch eigenvalues and eigenfunctions of the
Kohn–Sham Hamiltonian, and η is a positive infinitesimal. Equation (4) is a key ingredient of
our calculations. In practice, the matrix χ0

G,G′(q, ω) is evaluated by introducing some small
value of η or performing calculations at imaginary [26] or complex [22] frequencies ω with
subsequent analytical continuation to the real axis. Here we employ another approach based on
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the evaluation of the spectral function matrix SG,G′(q, ω) [30, 31] with subsequent evaluation
of the imaginary part of χ0

G,G′(q, ω) using the relation

SG,G′(q, ω) = 1

π
Im

[
χ0

G,G′(q, ω)
]

sgn(ω). (5)

Once the imaginary part of χ0
G,G′(q, ω) is evaluated, its real part is obtained by performing a

Hilbert transform. Information on the energy and lifetime of the Be bulk plasmon for a given q
has been obtained from the evaluation of the dynamical-structure factor

S(q, ω) = − 2h̄�

υ0(q)
Im

[
ε−1

G=0,G′=0(q, ω)
]
, (6)

where Im
[
ε−1

G=0,G′=0(q, ω)
]

is the energy-loss function related to the response function
χG,G′(q, ω) through

ε−1
G,G′(q, ω) = δG,G′ + υG(q)χG,G′(q, ω). (7)

The calculations have been performed for a hexagonal closed-packed Be lattice with
experimental lattice parameters a = 2.285 Å and c = 3.585 Å [32]. The one-particle
energies εnk and wavefunctions ψnk(r) were evaluated as a self-consistent solution of the
Kohn–Sham equations with the use of an exchange–correlation potential in the form of [33].
In our calculations the electron–ion interaction is described by a non-local, norm-conserving
ionic pseudo-potential [34, 35], andψnk(r)were expanded in a plane-wave basis up to a kinetic-
energy cutoff of 24 Ryd. Twenty reciprocal vectors, G, were included in the Fourier expansions
of χ0, χ , and ε. In equation (4) the sum in k includes a 72 × 72 × 24 sampling, which
corresponds to 124 416 points in the BZ. The sum over n and n′ included all energy bands
up to an energy of 50 eV above the Fermi level. We solve equation (3) using the random-
phase approximation, taking K xc = 0. As shown by Maddocks et al [22], this is a fairly good
approximation for Be due to its high valence electron density (for Be rs = 1.866). Note that,
in the present calculations, the local crystal fields are incorporated in the evaluation of S(q, ω)
through the inclusion of non-diagonal matrix elements in χ0

G,G′(q, ω).
The frequency ωp(q) and the linewidth p(q) of the plasmon are obtained from

Im
[
ε−1

G=0,G′=0(q, ω)
]

for a given wavevector q. For comparison with experimental dispersions
deduced from measurements on polycrystalline samples, we have performed direction-
averaged calculations of the dynamical structure factor. For this, we have calculated S(q, ω)
for the same set of wavevectors q that was used for k in the evaluation of χG,G′(q) in equation
(4). Finally, we calculate Sav(q, ω) as

Sav(q, ω) =
∑ZB

q′ S(q′, ω)e−(q−|q′ |)2/2

∑ZB
q′ e−(q−|q′ |)2/2

. (8)

The final direction-averaged ωp(q) and p(q) are obtained from the fitting of Sav(q, ω) with
one Lorentzian. We have proven that ωp(q) and p(q) change less than 0.1 eV for  in the
range 0.01–0.03 au. The extrapolated ωp(q → 0) = 19.05 eV and p(q → 0) = 5.15 eV for
small q are in excellent agreement with the values ωp = 19.4 eV and p = 5.1 eV, recently
calculated with the full-potential linearized augmented plane-wave method [27].

3. Experimental details and data processing

Inelastic x-ray scattering experiments were carried out on the D12A-XRD1 beamline at the
LNLS (National Synchrotron Light Laboratory, Brazil). The whole experimental setup is
described in detail in [36]. Briefly, it consists of a sagittally focusing double-crystal Si(111)
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monochromator in a non-dispersive setting and a high-resolution Rowland-type spectrometer
based on a spherically focusing nearly-backdiffracting Si(333) analyser. An x-ray mirror
placed upstream of the monochromator provided vertical focalization. The analyser was
positioned at a fixed Bragg angle of 89.2◦, and thus tuned to analyse radiation of 5.93 keV.
Energy-loss scans were accomplished by scanning the energy of the incident photon beam.
Si pin-diode detectors were used to monitor the flux of the incident beam and to record the
signal of inelastically scattered photons. The whole spectrometer was installed in a chamber
evacuated to 5 × 10−2 mbar to avoid loss of intensity due to air absorption and to reduce the
background arising from air scattering. In order to probe collective electronic excitations in
Be, measurements were performed at low momentum transfer, for magnitudes ranging from
0.11 to 0.61 au (scattering angles from 4◦ to 22◦, respectively). The covered range is well
below the critical wavevector for Be of qc = 0.73 au.5 Measurements were performed on a
2.2 mm-thick polycrystalline sample using symmetrical transmission geometry. This thickness
matches the mean free path of the incident photons in Be, which allows the scattering power
to be maximized. The beam dimensions at the sample position were 2.5 mm (h)× 1.6 mm (v).
The angular acceptance of the analyser was limited by means of annular diaphragms [36] to
improve the momentum resolution without diminishing to a large extent the collected solid
angle. The angular aperture of the diaphragms was 1.1◦, giving rise to a full transferred-
momentum resolution of 0.03 au, which is nearly independent of the scattering angle within the
measured range. The analyser collected scattered radiation in a solid angle varying from 4.7 msr
at 4◦ to 4.2 msr at 22◦. The total energy resolution of the spectrometer was 1.08±0.07 eV, which
was determined from the mean value of the widths (FWHM) of the elastic peaks. Throughout
the measurements, the stability of the elastic line was better than ±0.15 eV. The counting rate at
the plasmon peak at 100 mA ring current increased from 4 counts s−1 at the lowest momentum
transfer to 34 counts s−1 at the highest momentum transfer; the peak signal-to-background
ratio was better than 5 and 100, respectively. The background intensity is related to the low-
energy-loss side of the elastic peak. Depending on the scattering angle, between about 103 and
2.5 × 103 counts were collected in a single measuring point at the maximum of the inelastic
peak.

In figure 1 experimental energy-loss spectra of Be measured for different q values are
presented. A constant background, as determined from the low-energy-loss side of the elastic
peak, was subtracted. The scattered intensity is normalized to the signal of the monitor, placed
between the monochromator and the scattering sample. The data therefore do not need to be
corrected for the weak energy dependence of the monochromator reflectivity. Since the largest
variation of the incident energy when making energy-loss scans is only ∼40 eV, corrections due
to the weak energy dependence of the scattering cross section can be neglected. The influence
of multiple scattering processes on the energy-loss spectra is negligible in IXSS, as evidenced
experimentally in [15] and [37], and confirmed later by means of Monte Carlo studies [38]. In
contrast, in EELS, multiple events can distort the plasmon peak in Be appreciably for q-values
approaching qc [39]. The inelastic peaks were fitted with Voigt functions, where the half-width
of the Gaussian function, which should simulate the instrumental response, was set to be the
experimental energy resolution. The fitting procedure provides the peak position and the half-
width of the Lorentzian part of the Voigt function as fitting paramenters, from which the bulk
plasmon energy and linewidth, respectively, can be obtained directly.

5 This value corresponds to the free-electron-gas model and is obtained by solving the equation ω(q) = q2/2m +
qkF/m numerically, the right-hand side being the dispersion of the upper bound of the excitation continuum. The
plasmon dispersion curve ω(q) is obtained from the numerical solution of εL(q, ω(q)) = 0, where εL is the Lindhard
dielectric function [10]. The usual approximate expression qc ≈ ω0/vF (where ω0 is the plasmon energy at zero
momentum transfer and vF is the Fermi velocity) provides a somewhat smaller value of qc ≈ 0.66 au.

5



J. Phys.: Condens. Matter 19 (2007) 046207 G Tirao et al

Figure 1. Experimental x-ray energy-loss spectra of polycrystalline beryllium as a function of the
transferred energy for different magnitudes of momentum transfer. Error bars due to the counting
statistic are shown. The spectra are displaced vertically for clarity. Elastic lines are not shown in
the spectra.

4. Results and discussion

The experimental energy position of the plasmon peak as a function of momentum transfer,
along with present theoretical results, are shown in figure 2. In addition to the direction-
averaged curve, dispersions along some high-symmetry directions, namely parallel to the c-
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Figure 2. Plasmon energy dispersion for Be. Present measurements (filled circles) and calculations
(direction-averaged (dashed), �–A direction (open squares), �–M direction (open triangles) and
�–K direction (open circles)) are shown. The dotted line is the RPA result for a free electron gas.
The shaded region denotes the continuum of particle–hole excitations. The RPA curve intersects
the excitation continuum at qc = 0.73 au. The solid line is the fit to the experimental data with a
function of the form ω(q) = a + bq2 + cq4.

axis (�–A direction) and on the hexagonal plane (�–M and �–K directions) are also shown.
Theoretical directional dispersions and linewidths are presented only in the q-range where a
single plasmon peak is well defined in the corresponding directional energy-loss functions. At
higher momentum transfer, a double-peak structure begins to evolve and the plasmon peak
becomes strongly distorted. For the sake of comparison, the plasmon dispersion for the jellium
model within the RPA is included in the same figure. This curve is obtained by numerically
solving εL(q, ω(q)) = 0, thus showing the exact q-dependence of the plasmon energy for
the jellium model. Unlike the case of other simple metals such as Li, Na and Al, the free
electron gas (FEG) model in the RPA predicts for Be a plasmon dispersion not so far from the
experiment in the region of very low q-values (q < 0.3 au), as can be seen in figure 2. At larger
momentum transfers, the FEG plasmon dispersion deviates systematically from the experiment
to higher energy values as q approaches the excitation continuum. At q 	 0.6 au the deviation
is as large as 10%. It is a general trend of the plasmon dispersion for an FEG to increase
more rapidly with q than is observed experimentally [18, 19]. The theoretical dispersion in
the �–A direction is systematically higher than in the hexagonal plane, where the dispersion
is practically isotropic in the q-range shown. The calculated direction-averaged curve lies
slightly above the experimental one, displaced by ∼0.5 eV. To obtain the plasmon energy at
zero momentum transfer, a biquadratic function such as the one suggested by Sprösser-Prou
et al [18] was fitted to the experimental points in all the measured q-range. The extrapolation
of the fitted function to q = 0 gives a value of 18.6 ± 0.1 eV, which is in very good agreement
with the EELS value of 18.7 eV [40]. These measured values are very close to the extrapolated
theoretical value of 19.05 eV. In the early, medium-resolution x-ray study of Eisenberger
et al [14] a somewhat lower value of the plasmon energy at q = 0 (18.35 ± 0.35 eV) was
measured, in rather good accord with the present experimental value if the experimental errors
are considered. The FEG plasmon energy at the electron density of Be is 18.4 eV. In Be,
lattice effects shift the FEG value at q = 0 upwards, in contrast to Al and Na [21], whereas
at large wavevectors the FEG energy is lowered by the effects of the crystal. It is known
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Figure 3. Plasmon linewidth dispersion for Be. Present measurements (filled circles) and
calculations (direction-averaged (dashed), �–A direction (open squares), �–M direction (open
triangles) and �–K direction (open circles)) are shown. The values correspond to the FWHM
of the peaks. The solid line is the fit to the experimental data with a function of the form
(q) = a + bq2 + cq4.

that if the plasmon energy is far below the core excitation energies, as in the case of Be, the
contribution of the core polarization to the dielectric function causes a small red shift of the
plasmon energy [41, 42]. The relative energy shift can be estimated from a simple model [42]:
ω/ω 	 −Reεcore/2, which is valid provided that εcore 
 1. The core contribution to
the dielectric function can be evaluated using εcore 	 4πniα [41], where ni is the density of
the ions and α is the core polarizability. In the energy-loss range in which we are interested, α
can be replaced by a static polarizability. Using the free ion polarizability calculated in [43],
one obtains a shift of the plasmon energy at q = 0 of only ω 	 −0.12 eV. Though this
correction brings the calculated energy closer to the measured energy, core polarization effects
in Be seem to be unable to account for the whole difference in the plasmon energy at q = 0.
The remaining difference (<2%) could be attributed to uncertainties in the determination of
the experimental plasmon energies and to numerical uncertainties in the calculations. Effects
beyond RPA could also be responsible for small discrepancies in the q-dependence of the
dispersion [21]. Nevertheless, an overall good agreement between theory and experiment can
be concluded. This shows the importance of including lattice effects in the calculations in order
to reproduce the observed dispersion quantitatively well, as demonstrated in the case of Al [21].

Regarding the plasmon linewidth, the experimental data are displayed in figure 3 as a
function of the momentum transfer. The measured half-width shows a positive dispersion, as
in most simple metals, and a finite extrapolated value to q = 0 of 4.6 ± 0.1 eV, which is
in good agreement with the EELS value of 4.8 eV [40]. Results from present calculations
are also shown in figure 3. A marked anisotropy, depending on whether q is parallel or
perpendicular to the c-axis, is clearly seen. Whereas in the hexagonal plane the curves disperse
positively, exhibiting a slight anisotropy for q > 0.3 au, along the c-axis the calculated
linewidth shows a negative, weak dispersion at low momentum transfer, turning to positive
at q ∼ 0.3 au. The observed behaviour for q ‖ c-axis can be traced back to the reduction
of the phase space available for interband transitions as q increases, as proposed by other
authors to explain the negative dispersion in Li [24, 25, 48]. The plasmon linewidth extracted
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from the direction-averaged energy-loss function shows a positive net dispersion and lies
very close to the experimental curve. The difference between them is only 0.55 eV at the
extrapolated value to q = 0. In an early work [14], the extrapolation of the measured
data to q = 0 gives plasmon linewidths somewhat smaller than 4 eV (hexagonal plane)
and 3 eV (c-axis). Furthermore, a monotonically increasing half-width for q along the
c-axis was observed. The lack of agreement between those findings and the present results
can be attributed to the experimental shortcomings of early measurements, as mentioned in
the introduction. Additionally, the plasmon excitation was not investigated in that work at
sufficiently long wavelengths, as has been done in the present study.

It is well known that the RPA treatment of the jellium model predicts an infinitely
sharp plasmon peak for q < qc and a strongly broadened one for q > qc due to the
possibility of plasmon decay via electron–hole pair excitations (Landau damping). In a
correlated electron system, a plasmon can decay by exciting two (or more) particle–hole
pairs, giving rise to a quadratically dispersing half-width in the long-wavelength limit and
vanishing at q = 0 [44–46]. Other possible multiple excitations (plasmon-pair and plasmon–
plasmon excitations) have been discussed more recently by Sturm and Gusarov [47], but the
magnitude of their contribution should be of less importance or directly vanish (plasmon–
plasmon excitation) in the energy-loss range that we have investigated. For the electron density
of Be, the theoretical prediction [46] gives a half-width of ∼0.25 eV at q = 0.61 au (the
highest measured q-value). This width is about 32 times smaller than our measured value, thus
indicating that dynamical electron correlations in Be have a negligible effect on the linewidth
dispersion at q < qc. The observed half-width at q = 0 is relatively large compared to that
of other simple metals (tenths of an eV for Al and the alkali metals, except for Li, for which
it is 2.2 eV) [9, 19, 40]. In the nearly-free-electron approximation the decay of a plasmon
via interband transitions can be viewed as umklapp processes in which a reciprocal lattice
vector couples the plasmon to the particle–hole pair excitation channel of the free electron gas
[24]. Therefore, at q = 0 only those G vectors for which the point (|G|, ω(0)) falls into the
excitation continuum give a non-zero contribution to the plasmon halfwidth. It can be seen that
four sets of reciprocal lattice vectors (namely {G100}, {G002}, {G101} and {G102}) contribute
for Be, whereas for Al there are three [24] and for the alkali metals only one [25, 48]. In
addition, the probability of such transitions for a given G is proportional to the square of
the corresponding Fourier coefficient of the pseudo-potential [24]. Since for Be the pseudo-
potential is considerably stronger compared to that of Al and the alkali metals, interband-
transition-induced damping mechanisms are expected to play a much more important role in Be
than in those simple metals. Further damping mechanisms have been proposed and evaluated
in the literature. Plasmon decay via phonon-assisted intra- and interband transitions should be
of minor importance in simple metals [24]. As pointed out by Sturm [41], the imaginary part
of the core dielectric function provides a new damping mechanism, but its effect should be
very small if the core excitation energies are much larger than the plasmon energy [24]. On
the other hand, by performing calculations of the response function in the presence and in the
absence of the contribution from higher-lying core states in K, Ku and Eguiluz [26] found that
the plasmon linewidth is markedly affected by the availability of core excitations. Specifically,
they observed a reduction in the linewidth when core electrons are considered. Core excitation
effects could be partially responsible for the differences observed in Be, since core electrons
are not included in the present calculations. Nevertheless, despite some small discrepancies
between the present calculated and measured data, one can clearly conclude that, among the
several possible damping mechanisms, in the case of Be, interband transitions give the leading
contribution to the plasmon half-width and to its q-dependence, as is also observed in Al [24],
Li [25] and K [26].
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5. Conclusions

An experimental and theoretical study of the plasmon excitation in Be has been presented.
Overall good agreement between the measured plasmon energy dispersion and the results from
ab initio calculations within the RPA was found. Band-structure effects are responsible for
this agreement, principally as q approaches the excitation continuum. The observed finite
plasmon lifetime at q = 0 and the width dispersion are in fairly good agreement with present
calculations. Interband transitions were found to be the main damping mechanism in Be for
momentum transfers lower than the plasmon cutoff wavevector. Further measurements in single
crystals are necessary to confirm the anisotropies predicted by the theory both in the plasmon
energy and in the width dispersion. Theoretical studies accounting for core polarization and
exchange and correlation effects could help to sort out the small remaining discrepancies.
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[19] vom Felde A, Sprösser-Prou J and Fink J 1989 Phys. Rev. B 40 10181
[20] Dabrowski B 1986 Phys. Rev. B 34 4989
[21] Quong A A and Eguiluz A G 1993 Phys. Rev. Lett. 70 3955
[22] Maddocks N E, Godby R W and Needs R J 1994 Phys. Rev. B 49 8502
[23] Silkin V M, Chulkov E V and Echenique P M 2003 Phys. Rev. B 68 205106
[24] Sturm K 1982 Adv. Phys. 31 1
[25] Karlsson K and Aryasetiawan F 1995 Phys. Rev. B 52 4823

10

http://dx.doi.org/10.1088/0953-8984/13/34/307
http://dx.doi.org/10.1103/PhysRevB.46.12910
http://dx.doi.org/10.1103/PhysRevLett.77.3665
http://dx.doi.org/10.1103/PhysRevB.57.622
http://dx.doi.org/10.1103/PhysRevLett.83.2390
http://dx.doi.org/10.1016/S0368-2048(01)00313-9
http://dx.doi.org/10.1103/PhysRevLett.89.236404
http://dx.doi.org/10.1103/PhysRevB.71.060504
http://dx.doi.org/10.1103/PhysRevB.2.54
http://dx.doi.org/10.1103/PhysRevB.3.701
http://dx.doi.org/10.1103/PhysRevLett.31.311
http://dx.doi.org/10.1103/PhysRevB.40.12215
http://dx.doi.org/10.1103/RevModPhys.54.1017
http://dx.doi.org/10.1103/PhysRevB.40.5799
http://dx.doi.org/10.1103/PhysRevB.40.10181
http://dx.doi.org/10.1103/PhysRevB.34.4989
http://dx.doi.org/10.1103/PhysRevLett.70.3955
http://dx.doi.org/10.1103/PhysRevB.49.8502
http://dx.doi.org/10.1103/PhysRevB.68.205106
http://dx.doi.org/10.1080/00018738200101348
http://dx.doi.org/10.1103/PhysRevB.52.4823


J. Phys.: Condens. Matter 19 (2007) 046207 G Tirao et al

[26] Ku W and Eguiluz A G 1999 Phys. Rev. Lett. 82 2350
[27] Keast V J 2005 J. Electron Spectrosc. Relat. Phenom. 143 97
[28] Runge E and Gross E K U 1984 Phys. Rev. Lett. 52 997
[29] Petersilka M, Gossmann U J and Gross E K U 1996 Phys. Rev. Lett. 76 1212
[30] Aryasetiawan F and Gunnarsson O 1994 Phys. Rev. B 49 16214
[31] Aryasetiawan F 2001 Strong Coulomb Correlations in Electronic Structure Calculations ed V I Anisimov

(Singapore: Gordon and Breach)
[32] Amonenko V M, Ivanov V Y, Tikhinskii G F and Finkel A 1962 Fiz. Met. Metalloved. 14 852

Amonenko V M, Ivanov V Y, Tikhinskii G F and Finkel A 1962 Phys. Met. Metallogr. 14 47 (Engl. Transl.)
[33] Ceperly D M and Alder B J 1980 Phys. Rev. Lett. 45 566

as parametrized by Perdew J P and Zunger A 1981 Phys. Rev. B 23 5048
[34] Silkin V M, Chulkov E V, Sklyadneva I Yu and Panin V E 1984 Izv. Vyssh. Uchebn. Zaved. Fiz. 9 56

Silkin V M, Chulkov E V, Sklyadneva I Yu and Panin V E 1984 Russ. Phys. J. 27 762 (Engl. Transl.)
[35] Chulkov E V, Silkin V M and Shirykalov E N 1987 Fiz. Met. Metalloved. 64 213

Chulkov E V, Silkin V M and Shirykalov E N 1987 Phys. Met. Metallogr. 64 1 (Engl. Transl.)
[36] Tirao G, Stutz G and Cusatis C 2004 J. Synchrotron Radiat. 11 335
[37] Schülke W, Nagasawa H and Mourikis S 1984 Phys. Rev. Lett. 52 2065
[38] Felsteiner J and Schülke W 1997 Nucl. Instrum. Methods B 132 1
[39] Diekmann W, Eickmans J and Otto A 1986 Z. Phys. B 65 39
[40] Egerton R F 1986 Electron Energy-Loss Spectroscopy in the Electron Microscope (New York: Plenum)
[41] Sturm K 1983 Solid State Commun. 48 29
[42] Taut M 1986 J. Phys. C: Solid State Phys. 19 6009
[43] Dalgarno A 1962 Adv. Phys. 11 281
[44] DuBois D F and Kivelson M G 1969 Phys. Rev. 186 409
[45] Hasegawa M and Watabe M 1969 J. Phys. Soc. Japan 27 1393
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